Biographical Information
Joseph Piven, M.D., is Professor of psychiatry, pediatrics and psychology at the University of North Carolina at Chapel Hill, and Director of the UNC Neurodevelopmental Disorders Research Center, home of the NICHD-funded Mental Retardation and Developmental Disabilities Center.

Dr. Piven’s research is focused on the pathogenesis of autism and related disorders (such as Fragile X Syndrome) and includes studies on the molecular genetics of autism, the neuropsychological basis of autism and the broad autism phenotype, and magnetic resonance imaging of early brain development.

Dr. Piven received his M.D. degree from the University of Maryland in 1981 and completed training in general and child and adolescent psychiatry at the Johns Hopkins Hospital in Baltimore. He continued his research training in the genetics of neurobehavioral disorders, during a post-doctoral Merck Fellowship at Johns Hopkins, working with Susan Folstein, M.D. He joined the faculty of the Department of Psychiatry at the University of Iowa from 1990 through 1999, where he was Director of the Pervasive Developmental Disorders Clinic. At UNC, he also directs the NIH-funded Post-Doctoral Research Training Program in Neurodevelopmental Disorders, and the North Carolina STAART Autism Research Center.

Presentation Abstracts
Towards Defining the Phenotype of Autism
In his early descriptions of autism, Professor Leo Kanner noted an increase in the occurrence of particular behaviors in non-autistic family members that, although milder, were qualitatively similar to the defining features of autism. The twin study by Folstein and Rutter established that these characteristics, later referred to as constituting a ‘broad autism phenotype,’ were likely to be related to the underlying genetic liability for autism. This presentation will review the results of several studies of the broad autism phenotype as well as other potentially relevant aspects of the ‘autism phenotype’ that may be useful in future studies aiming to elucidate the pathogenesis of this condition.

Imaging the Developing Brain in Autism
Converging evidence from brain imaging, head circumference and post-mortem studies support the observation that brain enlargement is associated with autism. In this presentation data from an ongoing longitudinal MRI study of early brain development in autism will be reviewed and the findings will be related to results from parallel studies of the behavioral development in infant siblings of autistic individuals to suggest a new paradigm for understanding brain and behavioral development in autism.